
gmso
Release 0.12.0

Matt Thompson, Alex Yang, Ray Matsumoto, Parashara Shamaprasad, Umesh Timalsina, Co Quach, Ryan S. DeFever, Justin Gilmer

Jan 30, 2024

CONTENTS

1 Design Principles 3
1.1 Scope and Features of GMSO . 3
1.2 Structure of GMSO . 4

2 Data Structures in GMSO 5
2.1 Core Classes . 5
2.2 Potential Classes . 6
2.3 ForceField . 6

3 Formats 7
3.1 GROMACS . 7
3.2 GSD . 7
3.3 xyz . 7
3.4 LAMMPS DATA . 7

4 External 9
4.1 mBuild . 9
4.2 Parmed . 9
4.3 OpenMM . 9

5 Installation 11
5.1 Installing with conda . 11
5.2 Installing from source conda . 11
5.3 Install an editable version from source . 11
5.4 Supported Python Versions . 12
5.5 Testing your installation . 12
5.6 Install pre-commit . 12
5.7 Building the documentation . 12

6 Using GMSO with Docker 13
6.1 Prerequisites . 13
6.2 Quick Start . 13
6.3 Persisting User Volumes . 14
6.4 Running Python scripts in the container . 14
6.5 Cleaning Up . 15

7 Contributing 17
7.1 Features . 17
7.2 Version control . 17
7.3 Source code . 17
7.4 Tests . 18

i

ii

gmso, Release 0.12.0

This is the documentation for GMSO, the General Molecular Simulation Object. It is a part of the MoSDeF, the Molecular
Simulation Design Framework.

CONTENTS 1

http://mosdef.org

gmso, Release 0.12.0

2 CONTENTS

CHAPTER

ONE

DESIGN PRINCIPLES

1.1 Scope and Features of GMSO

GMSO is designed to enable the flexible, general representation of chemical topologies for molecular simulation. Efforts
are made to enable lossless, bias-free storage of data, without assuming particular chemistries, models, or using any
particular engine’s ecosystem as a starting point. The scope is generally restrained to the preparation, manipulation,
and conversion of and of input files for molecular simulation, i.e. before engines are called to execute the simulations
themselves. GMSO currently does not support conversions between trajectory file formats for analysis codes. In the
scope of molecular simulation, we loosely define a chemical topology as everything needed to reproducibly prepare a
chemical system for simulation. This includes particle coordinates and connectivity, box information, force field data
(functional forms, parameters tagged with units, partial charges, etc.) and some optional information that may not apply
to all systems (i.e. specification of elements with each particle).

GMSO enables the following features:

• Supporting a variety of models in the molecular simulation/computational chemistry community: No assump-
tions are made about an interaction site representing an atom or bead, instead supported atomistic, united-
atom/coarse-grained, polarizable, and other models!

• Greater flexibility for exotic potentials: The AtomType (and analogue classes for intramolecular interactions)
uses sympy to store any potential that can be represented by a mathematical expression. If you can write it down,
it can be stored!

• Easier development for glue to new engines: by not being designed for compatibility with any particular molec-
ular simulation engine or ecosystem, it becomes more tractable for developers in the community to add glue for
engines that are not currently supported (and even ones that do not exist at present)!

• Compatibility with existing community tools: No single molecular simulation tool will be a silver bullet, so
GMSO includes functions to convert objects. These can be used in their own right to convert between objects
in-memory and also to support conversion to file formats not natively supported at any given time. Currently
supported conversions include ParmEd, OpenMM, mBuild, MDTraj, with others coming in the future!

• Native support for reading and writing many common file formats (XYZ, GRO, TOP, LAMMPSDATA) and indirect
support, through other libraries, for many more!

3

gmso, Release 0.12.0

1.2 Structure of GMSO

There are three main modules within the Python package:

• gmso.core stores the classes that constitute the core data structures.

• gmso.formats stores readers and writers for (on-disk) file formats.

• gmso.external includes functions that convert core data structures between external libraries and their internal
representation.

4 Chapter 1. Design Principles

CHAPTER

TWO

DATA STRUCTURES IN GMSO

Following data structures are available within GMSO.

2.1 Core Classes

5

gmso, Release 0.12.0

2.1.1 Topology

2.1.2 SubTopology

2.1.3 Atom

2.1.4 Bond

2.1.5 Angle

2.1.6 Dihedral

2.1.7 Improper

2.2 Potential Classes

2.2.1 AtomType

2.2.2 BondType

2.2.3 AngleType

2.2.4 DihedralType

2.2.5 ImproperType

2.2.6 PairPotentialType

2.3 ForceField

6 Chapter 2. Data Structures in GMSO

CHAPTER

THREE

FORMATS

This submodule provides readers and writers for (on-disk) file formats.

3.1 GROMACS

The following methods are available for reading and writing GROMACS files.

3.2 GSD

The following methods are available for reading and writing GSD files.

3.3 xyz

The following methods are available for reading and writing xyz files.

3.4 LAMMPS DATA

The following methods are available for reading and writing LAMMPS data.

7

gmso, Release 0.12.0

8 Chapter 3. Formats

CHAPTER

FOUR

EXTERNAL

This submodule includes functions that convert core data structures between external libraries and their internal repre-
sentation.

4.1 mBuild

The following methods are available for converting mBuild objects to and from GMSO.

4.2 Parmed

Conversion methods for Parmed objects to and from GMSO.

4.3 OpenMM

Conversion methods for OpenMM objects to and from GMSO.

9

https://mbuild.mosdef.org
https://parmed.github.io/ParmEd/html/index.html
http://openmm.org/

gmso, Release 0.12.0

10 Chapter 4. External

CHAPTER

FIVE

INSTALLATION

5.1 Installing with conda

Starting from GMSO version 0.3.0, you can use conda to install GMSO in your preferred environment. This will also
install the dependencies of GMSO.

(your-env) $ conda install -c conda-forge gmso

5.2 Installing from source conda

Dependencies of GMSO are listed in the files environment.yml (lightweight environment specification containing
minimal dependencies) and environment-dev.yml (comprehensive environment specification including optional and
testing packages for developers). The gmso or gmso-dev conda environments can be created with

$ git clone https://github.com/mosdef-hub/gmso.git
$ cd gmso
for gmso conda environment
$ conda env create -f environment.yml
$ conda activate gmso

for gmso-dev
$ conda env create -f environment-dev.yml
$ conda activate gmso

install a non-editable version of gmso
$ pip install .

5.3 Install an editable version from source

Once all dependencies have been installed and the conda environment has been created, the GMSO itself can be installed.

$ cd gmso
$ conda activate gmso-dev # or gmso depending on your installation
$ pip install -e .

11

gmso, Release 0.12.0

5.4 Supported Python Versions

Python 3.8-3.11 is the recommend version for users. It is the only version on which development and testing consistently
takes place. Older (3.6-3.7) and newer (3.12+) versions of Python 3 are likely to work but no guarantee is made and,
in addition, some dependencies may not be available for other versions. No effort is made to support Python 2 because
it is considered obsolete as of early 2020.

5.5 Testing your installation

GMSO uses py.test to execute its unit tests. To run them, first install the gmso-dev environment from above as well
as gmso itself

$ conda activate gmso-dev
$ pip install -e .

And then run the tests with the py.test executable:

$ py.test -v

5.6 Install pre-commit

We use [pre-commit](https://pre-commit.com/) to automatically handle our code formatting and this package is in-
cluded in the dev environment. With the gmso-dev conda environment active, pre-commit can be installed locally as
a git hook by running

$ pre-commit install

And (optional) all files can be checked by running

$ pre-commit run --all-files

5.7 Building the documentation

GMSO uses sphinx to build its documentation. To build the docs locally, run the following while in the docs directory:

$ conda env create -f docs-env.yml
$ conda activate gmso-docs
$ make html

12 Chapter 5. Installation

https://pre-commit.com/
https://www.sphinx-doc.org/en/master/index.html

CHAPTER

SIX

USING GMSO WITH DOCKER

As much of scientific software development happens in unix platforms, to avoid the quirks of development dependent
on system you use, a recommended way is to use docker or other containerization technologies. This section is a how
to guide on using GMSO with docker.

6.1 Prerequisites

A docker installation in your machine. Follow this link to get a docker installation working on your machine. If you
are not familiar with docker and want to get started with docker, the Internet is full of good tutorials like the ones here
and here.

6.2 Quick Start

After you have a working docker installation, please use the following command to use run a jupyter-notebook with all
the dependencies for GMSO installed:

$ docker pull mosdef/gmso:latest
$ docker run -it --name gmso -p 8888:8888 mosdef/gmso:latest

If no command is provided to the container (as above), the container starts a jupyter-notebook at the (container)
location /home/anaconda/data. To access the notebook, paste the notebook URL into a web browser on your com-
puter. When you are finished, you can control-C to exit the notebook as usual. The docker container will exit upon
notebook shutdown.

Alternatively, you can also start a Bourne shell to use python from the container’s terminal:

$ docker run -it --mount type=bind,source=$(pwd),target="/home/anaconda/data" mosdef/
→˓gmso:latest sh
~ $ source .profile
(gmso-dev) ~ $

Warning: Containers by nature are ephemeral, so filesystem changes (e.g., adding a new notebook) only persist
until the end of the container’s lifecycle. If the container is removed, any changes or code additions will not persist.
See the section below for persistent data.

Note

13

https://docs.docker.com/get-docker/
https://docker-curriculum.com/
https://www.youtube.com/watch?v=zJ6WbK9zFpI&feature=youtu.be

gmso, Release 0.12.0

The -it flags connect your keyboard to the terminal running in the container. You may run the prior command without
those flags, but be aware that the container will not respond to any keyboard input. In that case, you would need to use
the docker ps and docker kill commands to shut down the container.

6.3 Persisting User Volumes

If you will be using GMSO from a docker container, a recommended way is to mount what are called user volumes in
the container. User volumes will provide a way to persist all filesystem/code additions made to a container regardless of
the container lifecycle. For example, you might want to create a directory called gmso-notebooks in your local system,
which will store all your GMSO notebooks/code. In order to make that accessible to the container(where the notebooks
will be created/edited), use the following steps:

$ mkdir -p /path/to/gmso-notebooks
$ cd /path/to/gmso-notebooks
$ docker run -it --name gmso --mount type=bind,source=$(pwd),target=/home/anaconda/data -
→˓p 8888:8888 mosdef/gmso:latest

You can easily mount a different directory from your local machine by changing source=$(pwd) to source=/path/
to/my/favorite/directory.

Note: The --mount flag mounts a volume into the docker container. Here we use a bind mount to bind the current
directory on our local filesystem to the /home/anaconda/data location in the container. The files you see in the
jupyter-notebook browser window are those that exist on your local machine.

Warning: If you are using the container with jupyter notebooks you should use the /home/anaconda/data
location as the mount point inside the container; this is the default notebook directory.

6.4 Running Python scripts in the container

Jupyter notebooks are a great way to explore new software and prototype code. However, when it comes time for
production science, it is often better to work with python scripts. In order to execute a python script (example.py)
that exists in the current working directory of your local machine, run:

$ docker run --mount type=bind,source=$(pwd),target=/home/anaconda/data mosdef/
→˓gmso:latest "python data/test.py"

Note that once again we are bind mounting the current working directory to /home/anaconda/data. The command
we pass to the container is python data/test.py. Note the prefix data/ to the script; this is because we enter the
container in the home folder (/home/anaconda), but our script is located under /home/anaconda/data.

Warning: Do not bind mount to target=/home/anaconda. This will cause errors.

If you don’t require a Jupyter notebook, but just want a Python interpreter, you can run:

$ docker run --mount type=bind,source=$(pwd),target=/home/anaconda/data mosdef/
→˓gmso:latest python

14 Chapter 6. Using GMSO with Docker

gmso, Release 0.12.0

If you don’t need access to any local data, you can of course drop the --mount command:

$ docker run mosdef/gmso:latest python

6.5 Cleaning Up

You can remove the created container by using the following command:

$ docker container rm gmso

Note: Instead of using latest, you can use the image mosdef/gmso:stable for most recent stable release of GMSO
and run the tutorials.

6.5. Cleaning Up 15

gmso, Release 0.12.0

16 Chapter 6. Using GMSO with Docker

CHAPTER

SEVEN

CONTRIBUTING

Contributions are welcomed via pull requests on GitHub. Developers and/or users will review requested changes and
make comments. The rest of this file will serve as a set of general guidelines for contributors.

7.1 Features

7.1.1 Implement functionality in a general and flexible fashion

GMSO is designed to be general and flexible, not limited to single chemistries, file formats, simulation engines, or
simulation methods. Additions to core features should attempt to provide something that is applicable to a variety of
use-cases and not targeted at only the focus area of your research. However, some specific features targeted toward a
limited use case may be appropriate. Speak to the developers before writing your code and they will help you make
design choices that allow flexibility.

7.2 Version control

We currently use the “standard” Pull Request model. Contributions should be implemented on feature branches of
forks. Please try to keep the master branch of your fork up-to-date with the master branch of the main repository.

7.2.1 Propose a single set of related changes

Small changes are preferred over large changes. A major contribution can often be broken down into smaller PRs.
Large PRs that affect many parts of the codebase can be harder to review and are more likely to cause merge conflicts.

7.3 Source code

7.3.1 Use a consistent style

It is important to have a consistent style throughout the source code. The following criteria are desired:

• Lines wrapped to 80 characters

• Lines are indented with spaces

• Lines do not end with whitespace

• For other details, refer to PEP8

17

https://github.com/mosdef-hub/gmso/pulls
https://www.python.org/dev/peps/pep-0008

gmso, Release 0.12.0

To help with the above, there are tools such as flake8 and Black.

7.3.2 Document code with comments

All public-facing functions should have docstrings using the numpy style. This includes concise paragraph-style de-
scription of what the class or function does, relevant limitations and known issues, and descriptions of arguments.
Internal functions can have simple one-liner docstrings.

7.4 Tests

7.4.1 Write unit tests

All new functionality in GMSO should be tested with automatic unit tests that execute in a few seconds. These tests
should attempt to cover all options that the user can select. All or most of the added lines of source code should be
covered by unit test(s). We currently use pytest, which can be executed simply by calling pytest from the root directory
of the package.

18 Chapter 7. Contributing

https://pypi.org/project/flake8/
https://github.com/psf/black
https://docs.pytest.org/en/latest/

	Design Principles
	Scope and Features of GMSO
	Structure of GMSO

	Data Structures in GMSO
	Core Classes
	Topology
	SubTopology
	Atom
	Bond
	Angle
	Dihedral
	Improper

	Potential Classes
	AtomType
	BondType
	AngleType
	DihedralType
	ImproperType
	PairPotentialType

	ForceField

	Formats
	GROMACS
	GSD
	xyz
	LAMMPS DATA

	External
	mBuild
	Parmed
	OpenMM

	Installation
	Installing with conda
	Installing from source conda
	Install an editable version from source
	Supported Python Versions
	Testing your installation
	Install pre-commit
	Building the documentation

	Using GMSO with Docker
	Prerequisites
	Quick Start
	Persisting User Volumes
	Running Python scripts in the container
	Cleaning Up

	Contributing
	Features
	Implement functionality in a general and flexible fashion

	Version control
	Propose a single set of related changes

	Source code
	Use a consistent style
	Document code with comments

	Tests
	Write unit tests

